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The Reliability of Crystallographic Structural Information* 
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Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A. 

(Received by the Hamilton Symposium Committee 15 June 1973) 

A review is presented, drawn largely from the work of Walter Hamilton, of the optimal design of a 
crystallographic experiment, of structure-factor measurement and the estimation of associated standard 
deviations, of pitfalls connected with the large scale computations required for structural refinement, of 
methods for choosing the best structural model derivable from the experiment, of means for assessing 
the quality of the information finally extracted, and of tests for recognizing aberrant data after refine- 
ment is complete. 

1. Introduction 

The field that the present paper seeks to review as part 
of the Hamilton Symposium is one that long held a 
central place in Walter Hamilton's crystallographic 
interests, and to which he made many major contribu- 
tions. The field is concerned with the derivation of ob- 
jective methods for assessing the quality of experimen- 
tal integrated intensity measurements, and with the im- 
provement both of the measurements and their asso- 
ciated correction factors: with the error in the theo- 
retical models used in crystal structure refinement and 
with the associated computing methods; with choosing 
among alternative models derived from a crystallo- 
graphic experiment; and with assessing the significance 
of the final parameters determined in the refinement. 

* E d i t o r i a l  n o t e :  - This paper was presented at a memorial 
symposium in honour of Waiter C. Hamilton, a former Co- 
editor of A c t a  C r y s t a l l o g r a p h i c a ,  held on 15 June 1973 at 
Brookhaven National Laboratory, and sponsored jointly by 
the American Crystallographic Association and the Brookhaven 
National Laboratory. 

It is hoped this review will help underscore the co- 
herence and importance of this aspect of Walter 
Hamilton's work, and at the same time highlight the 
broad conceptual framework in which he habitually 
thought. 

2. Optimum experimental design 

2(a). Integrated intensity measurement 
The best strategy for achieving the maximum preci- 

sion in a crystallographic experiment of given duration 
has been frequently discussed since Parrish (1956) and 
Mack & Spielberg (1958) showed, for the case of 
X-ray powder diffractometry, that the optimum divi- 
sion of time between background determination and 
peak scanning is proportional to the ratio of the square 
roots of their respective counting rates. This result is 
based on the assumption of a Gaussian distribution of 
diffracted X-ray quanta with variance given by the 
mean. Extension to the single-crystal diffractometry 
case was made in a group of three papers (Hamilton, 
1967; Shoemaker, 1968; Shoemaker & Hamilton, 
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1972), in which relationships were also developed giving 
the relative time that should be spent in measuring 
each reflection in order to maximize the precision of a 
given parameter in subsequent least-squares refine- 
ment. Hamilton and Shoemaker point out that the 
actual degree of parameter weight-optimization pos- 
sible has not yet been determined, nor has the influence 
&systematic error on their equations. Counting statis- 
tics have also been the basis of attempts by Mackenzie 
& Williams (1973), Killean (1973) and Grant (1973) to 
determine the optimum counting time for a reflection 
giving maximum precision in the intensity. 

The variance due to counting statistics alone is likely 
to dominate the total variance in the corrected inte- 
grated intensity only in the case of small absolute 
counts, e.g., less than 1000. The relative importance of 
the counting-statistic variance in a given reflection is 
readily determined from the variance ratio Y, where 
Y= V'(1)/V"(I), and the estimated variance V'(1) is 
given by: 

1 ~n (l-I,)Z (1) v ' ( l )  = j - - -X 

and 
J 

l=  1. ~ 1 . .  (2) 
J n:,l 

Thej  members of a form measured under conditions of 
pseudoreplication thus give an external measure of 
variance and V"(I), the correctly calculated variance 
of the mean intensity due to the counting statistics 
(cf Cetlin & Abrahams, 1963), gives an internal measure. 

The presence of random error only in the integrated 
intensity measurement will give a variance ratio of 
about unity: systematic error generally results in 
V'(i)>> V"(I). The normally small value o f j  leads to 
difficulties in analyzing the variance ratios in terms of 
the expected F-distribution. Schultz & Huber (1971) 
have shown the Y variance ratios to have an approx- 
imately 2 '2 distribution with j -  1 degrees of freedom, 
with 2"z values corresponding to each group of sym- 
metry-equivalent reflections ordered as a function of 
an experimental variable such as intensity, or scattering 
angle. 

Quality control of integrated intensity measurements 
in the course of the actual experiment (i.e., in real on- 
line time) requires that counting statistics, as a criterion 
for optimization of counting times, be accepted only 
if an objective determination is made, for each reflec- 
tion, that systematic error is not present. If systematic 
error is present, as indicated by the magnitudes of the 
variance ratios, analysis such as Schultz & Huber's 
should be made during the measurement sequence to 
identify individual terms leading to excessive V'(I) 
values. Such analysis should be followed by corrective 
action and improved remeasurement. 

The variation of variance ratio, averaged over groups 
of ten symmetry-independent reflections ordered on 
the intensity magnitudes, with averaged intensity is 
shown in Fig. 1 for the cubic crystal KTaxNb~_xO3 

(x_~0.77). The percentage error in intensity for this 
data, due to counting statistics, ranges from about 0.1 
to about 1. 

2(b). Radiation damage detection 
Successful control of intensity measurement leading 

to structure amplitudes of highest possible accuracy is 
predicated on complete immunity of the specimen 
crystal to radiation damage. A recent International 
Union of Crystallography (1973) study has shown that, 
in nine crystals of widely different chemical composi- 
tion, changes in intensity as a function of radiation 
exposure were detectable in each case. In no case did 
all reflections studied change uniformly. A diagnostic 
procedure in which at least three strong, three medium 
and three weak reflections distributed throughout re- 
ciprocal space are measured periodically throughout 
the course of data collection was recommended. Such 
a procedure should be part of a good quality control 
program, since the results of the measurement are 
generally assumed to apply to the crystal in a state 
undisturbed by radiation damage. 

3. The measured structure factor 

3(a). Reduction of intensity to structure factor 
The accurately measured integrated intensities are 

generally reduced to structure factors before calcula- 
tions such as refinement of a structural model may be 
undertaken. Reduction requires correction for several 
processes, including absorption, extinction, thermal 
and other diffuse scattering and multiple scattering; 
Walter Hamilton was concerned about all of these, and 
especially about extinction, on which he wrote four 
papers (Hamilton, 1957, 1958, 1963; Coppens & 
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Fig. 1. Variation of averaged variance ratio with averaged 
intensity, for the cubic crystal KTa~,Nbl_~,O3(x--0.77) 
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Hamilton, 1970). He found that, based on Zachariasen's 
(1967) secondary extinction treatment, crystals not in- 
frequently exhibit anisotropy in the extinction effect. 
Together with Coppens he presented a formalism by 
which anisotropic extinction coefficients could be de- 
termined either for Type I (extinction dominated by 
mosaic spread) or Type II (extinction dominated by 
particle size) crystals. He also modified his version of 
the ORFLS least-squares refinement program to refine 
the corresponding six components of a symmetrical 
second-order tensor. 

3(b). Intensity measurement projects 
Two interlaboratory projects have been designed to 

provide a measure of the accuracy of common methods 
of integrated intensity measurement. In the American 
Crystallographic Association (1967) project, the inten- 
sities of all hkl reflections, with (sin 0)/2 < 1.0 A -1, 
were measured on a ground sphere of CaF2 circulated 
among seven different laboratories. In the Interna- 
tional Union of Crystallography (1970a) project, the 
intensities of all reflections, with (sin 0)/2_<0.5 A -1, 
were measured on different crystals of (+)-tartaric 
acid by seventeen laboratories. Walter Hamilton en- 
thusiastically undertook the statistical analysis of the 
data generated by both projects, primarily by analysis- 
of-variance and use of interexperimental R values. 

The conclusion was drawn, for the ACA project, 
that most experiments determined F z values within 
5 % of the probable true values, and that few exper- 
iments measured F z to better than 2% .The largest 
systematic errors were found to be associated with the 
scattering angle: a dependence on intensity was also 
found, in a separate analysis, by Mackenzie & Maslen 
(1968). The IUCr project allowed the inference to be 
drawn that two scaled experimental sets of structure 
factors, measured under circumstances similar to those 
of the project, would differ most probably by 6%, 
agree no better than 3 % and usually differ by no more 
than 10% (one set however differed by nearly 50%). 
The absolute accuracy of any set was probably not 
better than 5 to 6 %. Several experiments had signifi- 
cant correlations between the experimental deviations 
from the average and intensity: other error sources 
also appeared to be present in addition to those simply 
associated with angle and intensity, such as variation 
in specimen characteristics. 

3(c). Standard deviation o f  the structure factor 
Determination of the fully corrected set of structure 

factors, Fracas, as in § 3(a), is incomplete without simul- 
taneous estimation of the standard deviation aFmeas 
in the sense that any quantitative determination is in- 
complete without a reliable measure of the associated 
uncertainty. A difficulty in applying analysis-of-vari- 
ance in 3(b) was the lack of reliable aFmeas for the 
various sets of experimental Fmeas. An objective esti- 
mate of aFmeas has been given (Abrahams, Bernstein 
& Kevc, 1971; Abrahams, 1964), in which the vari- 

ance in (Fmeas) 2 is a sum of identifiable component 
variances: 

~rZ(Fmeas)Z = az( Fmeascou,, i ng stat isti cs)2 

4 ~ k~ × 10-4(Fmeas)4+larger of 
J 

{4 ~ k~.2× 10-4(Fmeas) 4 or V'(F) z} (3) 
J 

where V'(F) 2 is defined as in equation (1), and the k 
and k' terms are estimated percentage errors. The larger 
of the third and fourth terms in equation (3) is used, 
since both estimate the variance due to anisotropy in 
measurement conditions, hence causing deviation from 
known symmetry (cf  Schultz, 1971). 

The expression for the variance aZ(Fmeas) z used by 
Walter Hamilton, especially in the extensive series of 
investigations on precise neutron diffraction structural 
studies of protein and nucleic acid components that he 
was engaged with to the very end, was: 

GZ(Fmeas) z = o-Z(FmeaScounting statistics) 2 + K z 
× 10-4(Fmeas) 4. (4) 

In this series (e.g., Frey, Koeztle, Lehmann & Hamil- 
ton, 1973; Koeztle, Hamilton & Parthasarathy, 1972) 
K 2 w a s  derived after least-squares structural refinement 
was essentially complete: values between 1 and 49 re- 
sulted in ]]Fmeasi-JFcalcll/aFmeas becoming, on 
average, independent of IFmeas]. These K 2 values may 
be interpreted in terms of equation (3) as indicating the 
largest single error in addition to counting statistics, 
for this series, to lie between 0.5 and 3-5 % of (Fmeas) z, 
including that due to V'(F) 2. The standard deviation 
of an observation of unit weight, as given by: 

S =  ~ {([IFmeas[-IFcalcil/aFmeas) z + ( m - n ) }  1/2 (5) 

where the summation is over all m observations, and n 
variables are used in least-squares minimization, was 
approximately 1.5 for both examples cited. The aver- 
age value of aFmeas obtained from equation (4) is 
hence about one-third too small. 

Systematic error in Fmeas and aFmeas can be de- 
tected definitively by comparison with a second, inde- 
pendently measured, data set by use of normal proba- 
bility plots (Abrahams & Keve, 1971). This method is 
discussed further in § 5(b). 

4. Crystal structure refinement 

Walter Hamilton's interests in the use of the fast digital 
computer for controlling crystallographic experiments 
in data acquisition and for refining crystal structure 
models stimulated numerous advances in technique 
(cf. Hamilton, 1968). He improved many standard pro- 
grams in addition to others he wrote himself. The pos- 
sibility that some versions of widely used standard 
programs might contain logical error concerned him, 
and in his term on the IUCr Commission on Crystal- 
lographic Computing he became deeply involved in the 
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early discussions on planning and testing that led to 
formulation of a set of standard tests for crystallo- 
graphic programs (Ahmed, Cruickshank, Larson & 
Stewart, 1972). Looking to the future, he organized a 
symposium on April 18, 1972 on Computational Needs 
and Resources in Crystallography (1973) under the 
auspices of the National Research Council. Of par- 
titular interest was a discussion on the possibility of 
establishing regional computer centers or networks of 
computers for large scale crystallographic computa- 
tions. 

Crystal structure refinement of materials under con- 
ditions for which the effects of anomalous dispersion 
are significant may be handled either by correcting the 
Fmeas for dispersion or by including the effects in the 
Fcalc. Ibers & Hamilton (1964) pointed out the advan- 
tages of the latter approach, and accordingly modified 
a standard least-squares refinement program in a 
manner which is now widely and routinely used. 

5. Crystal structure model hypothesis testing 

5(a). Hamilton A-test 
It frequently happens in course of refining a crystal 

structure, especially by the method of least squares, 
that a choice must be made between two or more mod- 
els differing in the number of variable parameters 
with which the structure is described. The assumption 
that one model fits the observations better than an- 
other, with due allowance for the differences in param- 
eters varied, forms a statistical hypothesis capable of 
being tested by statistical methods. In one of the most 
widely cited papers in modern structural crystallog- 
raphy, Walter Hamilton (Hamilton, 1961 and especially 
1965) developed a significance test based on com- 
parison of weighted R values ( ~ =  wR~/wR2), together 
with tables for the significance level of the determina- 
tion. Unlike use of the Student t-distribution (for small 
samples) for testing deviations on individual parameters 
derived from least-squares refinement of the various 
models, the ~'-test does not presuppose linearity in the 
equations of condition. 

In the absence of systematic error the ~'-test allows 
the hypothesis that Model 1 is correct, of Models 1 and 
2 corresponding to final refinement values of wR~ and 
wRz, to be rejected at the 100~% significance level if 

"~experimental > "~ca leu la ted ,  ~ • (6) 

As the inequality of (6) approaches equality, the possi- 
bility of rejecting the wrong hypothesis increases, for 
the assumption that the crystallographic experiment 
contains random error only is unlikely to be correct. 
A cautious approach would reject Model 1 only if 

' ~ e x p e r i m e n t a l -  1 >~>~'~calculated, ~x-- 1 . (7) 

A typical case in which the wrong hypothesis might be 
rejected would be an experiment in which angle- 
dependent systematic error is present that differs in 
magnitude in different but corresponding segments of 

reciprocal spacc: the resulting anisotropy could sim- 
ulate and be fitted with apparent anisotropic thermal 
parameters, even if these are genuinely isotropic. If 
inequality (7) is not satisfied, additional information 
should be sought before either hypothesis is rejected. 

Walter Hamilton's analysis showed that the ~-sig- 
nificance test is strictly applicable only if either the 
normal weighted R values or the generalized weighted 
R values for the two models are compared. Ford & 
Rollett (1970) point out that use of simple unweighted 
R values, as is sometimes found in the literature, can 
lead to highly deceptive results. The tabulation of sig- 
nificance points for the ~'-test given by Hamilton ex- 
tends to a maximum value of 120 degrees of freedom: 
larger values are obtainable by interpolation. A simple 
analytic expression has been given by Pawley (1970) 
which closely approximates the exact values, and which 
is readily adapted to inclusion in existing refinement 
programs. 

5(b). fiR-Normal probability plot 
Readily generated additional information for aiding 

hypothesis testing is available by computing the fiR- 
normal probability plot for each model. The statistic 
fiR~ = IFmeasl[-  IFcalcil/aFmeasi, obtained from the 
final least-squares refinement cycle with Fmeast and 
o-Fmeasi on the same scale as Fcalct, is ordered and 
plotted against the quantiles expected for a normal 
distribution (Abrahams & Keve, 1971; Hamilton & 
Abrahams, 1972). If the distribution of fiR~ is Gaussian, 
the resulting plot is a straight line of unit slope and 
zero intercept. The greater the departure from Gaus- 
sian, the less acceptable is the model. 

Use of the fiR plot is illustrated by some recent re- 
sults obtained in a study of the piezoelectric nonlinear 
optic chalcopyrite CuGaSz. A total of 134 symmetry- 
independent Fmeas, with aFmeas obtained by equa- 
tion (3), were measured on a sphere with r--0.0945 mm 
and pr= 1-724. Refinement with isotropic temperature 
factors gave R=0.031, wR=0.0460 and S=0.97.  
Further refinement with anisotropic temperature fac- 
tors led to R=0.030, wR=0.0416 and S=0.89.  The 
Hamilton N'-ratio is hence 1.107 and the calculated 
ratio ~5.124.0.005 is 1-068: equality (6) is obeyed, but not 
(7). The fiR-plot for the isotropic case is shown in Fig. 
2, that for the anisotropic case in Fig. 3. Initial exam- 
ination shows no major systematic deviations from 
linearity for either plot: systematic error, of the type 
expected for inadequate absorption correction for ex- 
ample, is not of major consequence. Excluding two or 
three outliers which, if present, are automatically at the 
extrema of probability plots, the improved linearity 
in Fig. 3 as compared with Fig. 2 greatly increases the 
confidence with which the hypothesis that the thermal 
vibrations in CuGaSz are isotropic may be rejected. 
Closer examination of Figs. 2 and 3 reveals intercepts 
close to zero, but slopes of 0.82 and 0.77 respectively. 

The unweighted slope of the fiR-plot is equivalent 
to the magnitude of S, the standard deviation of an 
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observation of unit weight, given by equation (5): for 
the anisotropic case, S =  0.79. The inference may hence 
be made that the average value of crFmeas for CuGaS2 
is overestimated by about 28 %, but that distribution 
of  the &R~ appears to be normal random. 

6. Quality of structural information from final model 

Critical evaluation of  the quality of  structural infor- 
mation obtained crystallographically is very close to 
the subject on which Walter Hamilton had planned to 
speak this month at the Conference on Critical Evalua- 
tion (1973) in Dartmouth College, and on which David 
Shoemaker will instead speak. It will be assumed in 
this section that the structural model refined was free 
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of gross blunders, and that neither the crystal measured 
nor the measurement system suffered from perceptible 
signs of instability. 

6(a). Comparison of results from interlaboratory 
intensity measurement project 

A direct measure of  the quality of the final results of  
a given structural study is obtainable by comparing the 
positional and vibrational coordinates from the fully 
refined model with other independently measured and 
refined sets of coordinates• Seventeen independently 
measured sets of Fmeas for (+)-tartaric acid were 
generated in the International Union of Crystallog- 
raphy (1970a) intensity project: two sets consisted only 
of one zone of data. Walter Hamilton (International 
Union of Crystallography, 1970b) used the remaining 
15 data sets in separate refinements of  the known model,  
by means of the method of least squares. It was imme- 
diately apparent that the magnitude of  the usual agree- 
ment factor R is highly insensitive to systematic error 
in the Fmeas: the range, over all data sets, is 0.034 to 
0.112 and the value of  R for the set that systematically 
differed most from average was 0.057. Hence, a low 
value of R is not necessarily an indicator of high 
quality. 

Analysis of the variation in the 29 positional and 60 
thermal vibrational parameters, excluding the hydrogen 
atoms, obtained for each data set is given in the pub- 
lished report, and additional analysis is expected to be 
presented by W. L. Nicholson and J. W. Tukey at the 
Dartmouth Conference (1973). It is sufficient here only 
to point out the conclusion that the estimated standard 
deviations obtained from the inverse matrix in the 
least-squares refinement for these data sets were not 
infrequently too small by a factor of  about 2, and all 
were on average too small by about the factor 1/2. The 
underestimation in the thermal vibration standard de- 
viations is even greater, by an additional factor of  
about 2. 

6(b). X z Comparison of two parameter sets 
In case two independent sets of Fmeas are available 

for a given material, with two resulting sets of  position 
and thermal vibration parameters, the differences be- 
tween corresponding parameters may be defined in 
terms of  the statistic: 

~p,=llp(1),l-lp(2),ll/{crZp(1),+~Zp(2)i} a/z. (8) 

Walter Hamilton (1969) proposed examining the hypo- 
thesis that the ~pi are drawn from a normal population 
with unit variance and zero mean by testing" 

N 

&Zp= Z 6ZP, (9) 
i = 1  

against X z with N degrees of  freedom. If the calculated 
values of 02/, exceeds the tabulated value of  ):zu.,, the 
hypothesis may be rejected with a 100c<% probability 
of falsely rejecting a true hypothesis. It is not necessary 
in (9) to sum over all N parameters" a subset m may be 
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used, and tested as Zz,,,,,. The Student t-test is not an 
adequate substitute for examining the significance of 
an individual value of 0pi. In his 1969 paper, Hamilton 
used the X z test to compare the parameters obtained in 
studying six crystals of different materials by indepen- 
dent X-ray and neutron diffraction investigations. He 
found O2p to be comparable to or less than 2'2.05 for most 
nonhydrogen atom position coordinates in these crys- 
tals: an increase by a factor of 2 in the estimated stan- 
dard deviation [see § 6(a)] for these parameters would 

trZn< ~2 i.e., there are no signif- make all but one ,, 1_, z0.05, 
icant differences at the 5 % level in the two sets of in- 
vestigations, except for the z coordinates of completely 
deuterated c~-oxalic acid. dihydrate. Large and highly 
significant differences, however, remain in many of the 
thermal and hydrogen atom position parameters. 

6(c). Op-Half-normal probability plot 
The 0pi-statistic distribution in equation (8) may 

also be conveniently analyzed by normal probability 
plotting methods [see section 5(b)]. The 0pi are ordered 
(note all 0p,_>0) in increasing magnitude and plotted 
against the expected quantiles for half-normal order 
statistics (i.e., ranked moduli of normal observations). 
Tables of ranked moduli, for sample sizes to 41, are 
given in Hamilton & Abrahams (1972). For larger 
samples, the percentage points of the normal distribu- 
tion may be used, with P(X , )=(2 j -2 i+  1)/2j,* where j 
is the number of 0p, in the sample and corresponding 
values of X, are tabulated, for example, in Tables of 
Normal Probability Functions (1953). Use of these per- 
centage points results in small errors in the extrema of 
the ranked moduli: these are eliminated in tables ap- 
pearing in Vol. IV of International Tables for X-ray 
Crystallography (1974). 

Examples of 0p half-normal probability plots are 
given in Fig. 4, taken from Verbist, Lehmann, Koetzle 
& Hamilton (1972): three independent investigations 
of the crystal structure of L-asparagine monohydrate 
are compared. The solid line represents an ideal normal 
distribution of 0pi. The linearity of Figs. 4(a), (b), and 
(c) indicate that the 0p~ for these cases are approx- 
imately normally distributed, but with pooled standard 
deviations [see equation (8)] underestimated by a factor 
of about 1.6 for experiment~ 1 and 2 and overestimated 
by about 0.8 for experiments 1 and 3. The comparison 
of position parameters for experiments 1 and 3 in 
Fig. 4(d) indicates the presence of systematic error, 
and an underestimation of the pooled standard devia- 
tion by about the factor 1.4. These factors may be used 
in more realistically estimating the standard deviations. 

7. Model-guided recognition of aberrant data 

At the conclusion of crystal structure refinement, based 
on the best Fracas and o-Fracas available, large values 

* A more accurate value is given (private communication 
from J.W. Tukey) by P(X,) = (3j--3i+ 2)/(3j+ 1). 

of 0R [§ 5(b)] may be examined for evidence of error. 
Large OR terms necessarily accumulate at the extrema 
of the 0R-normal probability plot. It is generally 
inappropriate to single out a OR term, no matter how 
large, if it forms part of a smooth distribution since 
the remaining terms are clearly subject to similar er- 
ror. The 0R-plot, however, provides an unmistakable 
diagnostic for the presence of unexpected systematic 
error in a class of measurement. 

An illustrative example of the diagnostic use of 0R- 
plots comes from recent measurements on the piezoelec- 
tric chalcopyrite CulnS2, isomorphous with the material 
referred to in § 5(b). Based on 310 pairs of Fracas, 
aFmeas the 'final' least-squares refinement cycle gave 
R = 0.047, wR = 0.060 and S = 1.08 : the corresponding 
0R-plot shown in Fig. 5 contains a large and syste- 
matic departure from linearity over the entire central 
portion. Evaluation of the experimental conditions 
showed that one complete layer of reciprocal space, 
{h31}, had been measured with a lossy co-axial con- 
nection between preamplifier and amplifier. The scale 
factor for this layer was aberrantly different from the 
remainder of the data. Correction by a scale factor 
9.0% larger than the single overall scale factor led 
to further refinement, with R=0.038, wR=0.052 and 
S=0.99:  the corresponding aR-plot shown in Fig. 6 
is close to linear, except for a few outliers all of which 
are of low intensity with aFmeas that aie probably 
systematically underestimated. It may be noted that 
although the single position parameter changed by 
only 0.3a, all the thermal parameters decreased by a 
maximum of 1.Sa. 
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Fig. 4. Fore 6p-half normal probability plots comparing (a) 
thermal and (b) position parameters for experiments 1 and 
2 and (c) thermal and (d) position parameters for experi- 
ments 1 and 3. The three experiments were made in different 
laboratories. [from Verbist et al. (1972)]. 
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8. Conclusions 

1. If structure factors are measured for the purpose of 
crystal structure determination by the method of least 
squares, the corresponding aFmeas should be estimated 
with a comparable level of care. 

2. Diagnostic procedures for detection of possible 
radiation damage should be followed in all crystallo- 
graphic experiments. 

3. The hypothesis that one structure model should 
be rejected in favor of another, based on Hamilton's 
(1965) A-test, assumes the presence only of random 
error. A more cautious approach permits rejection only 
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Fig. 5. fiR-normal probability plot for a fully refined aniso- 
tropic model (R=0.047). The 'hump' in the central section 
was indicative of a major experimental or model erroi 
(cf. Fig. 6). 
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Fig. 6. fiR-normal probability plot for model used in Fig. 5, 
on full refinement and after elimination of the experimental 
error. 

if '~experimental- 1 >~calculated, ~t-- 1, in the absence of 
further independent data or tests. 

4. In addition to the inclusion of R, wR and S fac- 
tors in published crystal structure papers, the 6R- 
normal probability plot should always be given as a 
visual indicator of the quality of the entire data. 

5. In case two independent sets of Fmeas (and 
aFmeas) are available for the same material, @ half- 
normal and 6m-normal probability plot analysis pro- 
vide the basis for a realistic estimate of the joint error 
distribution. 
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Stereochemistry of Cooperativity Effects in the Prosthetic Group of Cohoglobin* 

BY JAMES A. IBERS, JOSEPH W. LAUHER AND ROBERT G. LITTLE 

Department o f  Chemistry, Northwestern University, Evanston, Illinois 60201, U.S.A. 

(Received by the Hamilton Symposium Committee 15 June 1973) 

Based on diffraction studies of model cobalt-porphyrin systems an estimate of 0.38/~ is obtained for the 
maximum movement of the proximal histidine residue relative to the mean plane of the porphyrin ring 
on oxygenation of coboglobin, the cobalt analogue of hemoglobin. This estimate is about one-half that 
currently believed to exist in hemoglobin. It is suggested that an additional stereochemical basis for 
cooperativity of oxygenation in coboglobin may be the transition of the initially non-planar porphyrin 
core to essential planarity on oxygenation of the cobalt-heme. 

The oxygenation of hemoglobin is a coopeiative phe- 
nomenon in which the last oxygen molecule enters 
with less difficulty than the others because of an in- 
teraction between protein sub-units. In a series of 
classic studies on model systems Hoard and coworkeis 
have provided a stereochemical explanation for the ex- 
pected changes in the prosthetic group of hemoglobin 
upon oxygenation. [See Hoard (1971) for a recent re- 
view of the subject.] Perutz, with direct experimental 
results on various hemoglobins as well as Hoard's 
studies of model systems, has postulated a 'trigger' 
mechanism for this cooperativity (Perutz, 1970a, b; 
Perutz & TenEyck, 1971). In essence, oxygenation re- 
sults in a change of the state of the iron atom of the 
heine group from high-spin Fe(II) to low-spin Fe(III) 
or low-spin Fe(II), with a concomitant movement of 
the Fe atom towardt  the mean plane of the porphyrin 
ring estimated to be 0.75 to 0.95 A. Since this Fe atom 
is covalently bonded t o t h e  proximal histidine residue 
of the globin, this residue is shifted toward the por- 
phyrin plane with a resultant change in the structure 
of the protein. In this way the oxygenation of one heine 

* Editorial note: - This paper was presented at a memorial 
symposium in honour of Walter C. Hamilton, a former Co- 
editor of Acta Crystallographica, held on 15 June 1973 at 
Brookhaven National Laboratory, and sponsored jointly by 
the American Crystallographic Association and the Brookhaven 
National Laboratory. 

I" We choose the mean plane of the porphyrin ring (ex- 
cluding substituents) as the reference point for a description 
of these relative motions. 

unit leads to effects at the other heme units, despite 
the fact that the Fe atoms in the heroes are separated 
by more than 25 A. 

In the past few years it has been shown by a number 
of workers that it is possible to prepare and study com- 
plexes of the type BCoL .02, where B is a base and 
where L is a Schiff base (Crumbliss & Basolo, 1970; 
Hoffman, Diemente & Basolo, 1970) or a porphyrin 
(Misono, K o d a &  Uchida, 1969; Walker, 1970; Stynes 
& lbers, 1972a). Following the initial studies in this 
area Hoffman & Petering (1970) reconstituted hemo- 
globin with a cobalt porphyrin. Hoffman, Spilburg & 
Petering (1971) showed that this material, which they 
called 'coboglobin', exhibits cooperative, allosteric oxy- 
gen binding. This has since been confirmed (Hsu, 
Spilburg, Bull & Hoffman, 1972). As Hoffman, Spil- 
burg & Petering (1971) note, the oxygenation of cobo- 
globin involves a change from low-spin Co(II) to low- 
spin Co(III). From stereochemical considerations they 
conclude that the cobalt ligation in coboglobin should 
cause a substantially smaller, perhaps negligible, mo- 
tion of the proximal histidine residue relative to the 
mean plane of the porphyrin molecule than is postu- 
lated for hemoglobin. Perutz & TenEyck (1971) have 
discussed the implications of cooperative oxygen bind- 
ing in coboglobin on the trigger mechanism for hemo- 
globin. 

Here, on the basis of studies of model systems, we 
present a more quantitative picture of the stereochem- 
istry of cooperative effects in the prosthetic group of 


